User mobility profile prediction: An adaptive fuzzy inference approach
نویسندگان
چکیده
Predicting the probabilities that a mobile user will be active in other cells at future moments poses a significant technical challenge to network resource management in multimedia wireless communications. The probability information can be used to assist base stations to maintain a balance between guaranteeing quality of service (QoS) to mobile users and achieving maximum resource utilization. This paper proposes a novel adaptive fuzzy logic inference system to estimate and predict the probability information for direct sequence code division multiple access (DS/CDMA) wireless communications networks. The estimation is based on measured pilot signal strengths at the mobile user from a number of nearby base stations, and the prediction is obtained using the recursive least square (RLS) algorithm. Numerical results are presented to demonstrate the performance of the proposed technique under various path loss and channel shadowing conditions.
منابع مشابه
Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملAPPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES
The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wireless Networks
دوره 6 شماره
صفحات -
تاریخ انتشار 2000